Meister der Datenverarbeitung

© MPIDS
Text von: redaktion

Gruppen von Neuronen in der Großhirnrinde können deutlich schnellere Signale verarbeiten und weiterleiten als lange vermutet. Für diesen erstaunlichen experimentellen Fund haben Göttinger Wissenschaftler jetzt erstmals eine Erklärung gefunden.

Die theoretischen Berechnungen der Wissenschaftler vom Max-Planck-Institut für Dynamik und Selbstorganisation (MPIDS), vom Bernstein Center for Computational Neuroscience Göttingen und von der Universität Göttingen zeigen, dass allein die Geschwindigkeit, mit der ein einzelnes Neuron ein Signal abfeuert, die Kommunikationsgeschwindigkeit einer Gruppe begrenzt. Neuronenverbunde können somit mit einigen hundert Einzelreizen pro Sekunde umgehen.

Bisher gingen Wissenschaftler davon aus, dass die Großhirnrinde nur Signale mit Frequenzen von bis maximal 20 Hertz bewältigen kann. Doch jüngste Experimente haben gezeigt, dass Gruppen von Neuronen deutlich schneller reagieren können als gedacht. Sie kommen mit Signalen von bis zu 200 Hertz zurecht.

Eine Erklärung für dieses Verhalten gab es bisher nicht. „Damit ein theoretisches Modell dieses Verhalten erklären kann, muss es die Dynamik der elektrischen Ströme in der Zellmembran genau berücksichtigen“, erklärt Fred Wolf vom MPIDS den Ansatz seiner neuen Studie.

Den Göttinger Wissenschaftlern ist es nun erstmals gelungen, dass zu einem eingehenden Signal die Antwort einer Neuronengruppe direkt berechnet werden konnte.

„Leitet die Gruppe kein Ausgangssignal mehr weiter, ist dies ein Zeichen, dass das Eingangssignal zu schnell war und die Neuronen überfordert hat“, erklärt Wei Wei vom MPIDS den Grundgedanken des Modells.

Die Rechnungen der Forscher zeigen, dass keinesfalls die Dauer der Erholungsphase die Geschwindigkeit der neuronalen Kommunikation begrenzt. Eine obere Grenze für die Verarbeitungsgeschwindigkeit hängt stattdessen nur von der deutlich kürzeren Zeit ab, die das Neuron zum Aufbau eines Pulses benötigt. Teams von Neuronen können somit problemlos hochfrequente Signale von einigen hundert Hertz empfangen und weiterleiten.

Die neuen Ergebnisse könnten unter anderem von großer Bedeutung für die Entwicklungsneurobiologie sein. Schon lange wissen Forscher, dass bei Säuglingen und Jungtieren visuelle Erfahrungen erst ab einem bestimmten Alter neue Verknüpfungen der Nervenzellen in der Großhirnrinde auslösen.

„Die allerersten Reize hingegen verändern die Architektur des Neuronennetzes kaum“, erklärt Siegrid Löwel, Neurobiologin an der Universität Göttingen. Mithilfe der neuen Ergebnisse ließe sich dieses Phänomen nun im Prinzip erklären. Denn das Knüpfen neuer Verbindungen funktioniert nur dann zuverlässig, wenn die Neuronen möglichst schnell und präzise auf eingehende Sinnesinformationen reagieren können.

Sollte sich im Experiment herausstellen, dass die Neuronen von Jungtieren nicht so schnelle Signale verarbeiten können wie die ausgewachsener Tiere, würde dies diese Erklärung bestätigen.